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Abstract 

Experiences, such as environmental enrichment (EE), that allow for exploration often lead to 

brain changes and alter novelty-seeking behaviors, and adolescence is a developmental 

period in which these behaviors increase. In this study, the effects of EE during adolescence 

on preference for familiar objects that have been rearranged using an object-in-place (OiP) 

task and on neural activation in the hippocampus, which is implicated in the detection of 

novel spatial relationships, was investigated. Adolescent Long-Evans rats (n=16) were 

exposed to EE between postnatal days (PND) 25 and 48. Age-matched controls (n=16) 

experienced a non-enriched home-cage.  Two-trial OiP testing occurred on PND 36 and 50 

with two delays (15 and 60 min) in an open field containing four objects. Time in direct 

contact with the rearranged objects at each delay trial was measured. After behavioral testing, 

brain tissue was processed to examine levels of neural activity in the hippocampus. At PND 

36, EE rats spent less time than no-EE rats investigating the rearranged objects at the 15 min 

delay (p<.0519), and more time at these objects at the 60 min delay than no-EE rats 

(p<.0089). However, at both delays EE rats spent an equal proportion of time investigating 

both sets of objects. No significant interaction of EE and OiP task delay was seen at PND 50. 

Histology showed 24.4% fewer active neurons in CA1 of EE rats than no-EE rats (p<.0336), 

no difference between groups in DG activation. While neural data support the conclusion that 

EE animals recognize novelty, behavioral results indicate a decrease in novelty preference in 

younger, but not older adolescent animals, as a result of EE.  
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Environmental Enrichment Promotes Adaptation to Environment Rearrangement in Younger 

but not Older Adolescent Rats 

 Exploration allows an animal to experience, learn about, and practice investigating 

familiar and novel features in an environment through active investigation (Forgays & 

Forgays, 1952; Lynn & Brown, 2009).	  Experiences, such as environmental enrichment (EE), 

that provide opportunity for exploration often lead to brain and behavior changes (Cain, 

Green, & Bardo, 2006; Forgays & Forgays, 1952). EE can alter brain development, enhance 

learning and memory, change emotional responses, and affect aspects of exploratory 

behavior, including novelty preference and investigation strategies (Cain, Green, & Bardo, 

2006; Forgays & Forgays, 1952; van Praag, Kempermann, & Gage, 2000). In addition, EE 

can improve problem solving skills (Forgays & Forgays, 1951; Hymovitch, 1952), reduce 

frequency of abnormal behavior and stress, and increase the overall well-being of the animal 

(Würbel, Stauffacher, & von Holst, 1996).  

Because EE has been shown to be beneficial to animals in many ways, there has been 

a recent rise in the promotion of EE in animal facilities as a general policy, in addition to the 

implementation of enrichment-type programs in schools with the intent of promoting health 

and decreasing risk-taking behavior, among other goals (Olsson & Dahlborn, 2002). 

Understanding the effects of EE on risk-taking behavior is perhaps especially relevant in 

adolescent animals because of the increases in risk-taking behavior influenced by adolescent 

development (Lynn & Brown, 2009). These behavior changes typically follow a predictable 

course, and may be influenced by experience, such as EE. 	  

How adolescent animals interact with their environment is a reliable method to 

measure the outcome of the behavioral changes, such as increases in novelty preference and 
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exploration, both measures of risk-taking behavior.  Typically, novel object preference 

(NOP; e.g., Barker & Warburton, 2011) and novel location preference (NLP; e.g., Cost et al., 

2014) tasks are used to assess novelty preference behaviors. These tasks, however, are much 

less complex than typical enriched environments are, and, as such, performance on these 

tasks may not fully elucidate behavior changes in animals that have experienced a complex 

environment, such as EE, prior to testing.  

How EE during adolescence yields brain changes that contribute to changes in 

exploration strategies and novelty preferences, was investigated using a preference task. The 

task used is more complex than traditional NOP and NLP tasks, as it has an internal, 

rearranged environment containing four objects, in addition to external cues.  

Adolescence 

In the rat, adolescence is considered to be between postnatal day (PND) 21, beginning 

at weaning, and 60, when early adulthood begins (Candland & Campbell, 1962; Lynn & 

Brown, 2009; Tirelli, Laviola, & Adrinani, 2003). Numerous, global changes in the brain 

driven by experience and genetics (including changes in myelination, synaptogenesis, and 

white matter and grey matter ratio) are connected with behavioral changes in the adolescent 

animal (Blakemore & Choudury, 2006; Spear, 2000). During this developmental period, wild 

rats begin venturing out of the nest to forage, with the final intent to leave the nest entirely 

(Barnea & Nottebohm, 1996; Lynn & Brown, 2009). This increase in exploration is 

important, as the animals must learn landmarks and the spatial relationships between these 

landmarks, so as to be able to find food, shelter, and avoid danger reliably (Barnea & 

Nottebohm, 1996). As a result, adolescence is characterized by an increase in exploratory 
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behavior, particularly exploration that allows the animal to learn about features of the 

environment (Lynn & Brown, 2009; Stansfield & Kirstein, 2005). 

Exploration can be defined as active investigation, including locomotion, which leads 

an animal to learn information about its environment (Barker & Warburton, 2009; Bouchon 

& Will; 1982; Lynn & Brown, 2009). Lynn and Brown (2009) showed that locomotion 

increased with age, with late adolescent (PND 47-59) rats exploring more than early 

adolescent (PND 21-33) rats.  

Adolescent rats also demonstrate a predisposition towards sensation or novelty 

seeking, aspects of risk-taking behavior (Blakemore & Choudhury, 2006; Lynn & Brown, 

2009; Spear, 2000; Stansfield & Kirstein, 2005).  Novelty seeking and risk-taking behavior 

can be quantified in a laboratory setting by measuring the amount of time an animal spends 

interacting with novel objects or by measuring latency to approach novel objects, such as in 

NOP and NLP tasks (e.g., Barker & Warburton, 2011; Cost et al., 2014). Stansfield and 

Kirstein (2005) demonstrated that adolescent rats spend twice as much time interacting with 

a novel object as compared to adult rats. Further, the latency to approach the novel object 

was less for adolescent rats, and they returned to the novel object more frequently as adult 

rats (Stansfield & Kirstein, 2005). Thus, there is a developmental increase in novelty 

preference during adolescence, as well (Lynn & Brown, 2009; Stansfield & Kirstein, 2005).  

Environmental Enrichment 

Environmental enrichment (EE) can also lead to changes in brain and behavior (Ali, 

Wilson, & Murphey, 2009). Generally, EE in a laboratory setting provides opportunities for 

complex physical, cognitive, and social stimulation beyond what would be received in 

standard housing conditions (Bennett, McRae, Levy, & Frick, 2006; Dhanushkodi, Bindu, 
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Raju, & Kutty, 2007; Meehan & Mench, 2002; Simpson & Kelly, 2011; van Praag, 

Kempermann, & Gage, 2000). There are two critical features of EE: physical and social. 

Physical EE involves structural modifications to the environment (e.g., different levels, toys, 

tunnels, etc.), while social EE involves opportunities to interact with other animals (e.g., 

housing in cohorts, mixed EE cages, etc.; Meehan & Mench, 2002; Simpson & Kelly; 2011; 

van Praag et al., 2000). EE is most effective at changing brain circuits and behaviors 

mediated by those circuits when both of these features are present, perhaps because both 

features are present in the wild. When both physical and social paradigms are implemented, 

EE can be used as a model to study experience-dependent brain and behavior changes, as it 

involves sensory (touch, smell, visual), emotional (stress, fear) and cognitive (novel problem 

solving) experiences (e.g., Ali, et al., 2009; Lynn & Brown; 2009; Meehan & Mench, 2002). 

The effects of EE on the brain are global and include synaptogenesis (Moser, Moser, 

& Andersen, 1994; Rampon et al., 2000), altered synaptic transmission (Foster & Dumas, 

2001; Green, McNaughton,& Barnes, 1990), enhanced neurogenesis (esp. in the hippocampal 

dentate gyrus), increased cortical thickness, increased glial density, and increased dendritic 

arborization (e.g., Barnea, Mishal, & Nottebohm, 2006; Diamond, Ingham, Johnson, Bennett, 

& Rosenzweig, 1976; Kempermann, Kuhn, & Gage, 1997; Kempermann & Gage, 1999; 

Rosenzweig, 2003; Rosenzweig & Bennett, 1996). The short-term effects of EE include 

increased neural activation in the cerebral cortex and hippocampus (especially, dentate gyrus 

and cornu ammonis 3) indicating that these regions are involved in the initial response to 

novelty (Ali et al., 2009). Such neural plasticity accompanies the observed changes in 

behavior.  
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Like unenriched (no-EE) adolescent animals, adult animals with enriching 

experiences show a permanent, shorter latency to approach novelty within an environment 

and a shorter duration of exploration (Cain, Green, & Bardo, 2006; Fernandez-Teruel et al., 

2002; Meehan & Mench, 2002). In addition, EE has been shown to improve problem solving 

skills, performance on memory and learning tasks, and to mitigate age-related deficits of 

spatial reference memory (Ali et al., 2009; Bennett et al., 2006; Forgays & Forgays, 1951; 

Hebb, 1947; Simpson & Kelly, 2011; van Praag et al., 2000). EE is also likely to alter these 

behaviors in adolescent animals. As adolescence is a time during which behaviors related to 

exploration and novelty-seeking increase, EE during this time could alter these behaviors in a 

way different from the way it alters these behaviors in adults, which could then be measured 

in a laboratory setting. 

The majority of studies investigating the effects of EE have looked at adult animals’ 

behavior and brain (e.g., Ali et al., 2009; Bennett et al., 2006; Cain, Green, & Bardo, 2006; 

Forgays & Forgays, 1951; Hebb, 1947; Meehan & Mench, 2002; Simpson & Kelly, 2011; 

van Praag et al., 2000). Several researchers (e.g., Hymovitch, 1952; Simpson & Kelly, 2011; 

van Praag et al., 2000) have examined EE across the lifespan and have suggested that there 

may be a time during which EE is most beneficial, however, when this critical period might 

be is not specified. It seems likely, however, that this critical period could be during 

adolescence, as the few studies using adolescent animals indicate that 1) behavioral changes 

in adolescent animals as a result of EE are different from the changes seen in adult animals, 

and 2) early EE exposure results in superior problem-solving abilities as compared to 

exposure to EE later in life (Hymovitch, 1952). Further, adolescence is a time of myriad 

brain changes (Spear, 2000). If adolescence is a critical period for EE, such biologically 
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relevant EE could modulate and facilitate both behavior changes and brain changes. Thus, it 

becomes essential to investigate exactly how EE during adolescence might influence the 

behaviors seen in these animals, for instance, by using tasks that allow for assessment of 

novelty preference and risk-taking.  

Behavioral Paradigms and Neural Correlates 

NOP and NLP tasks are relatively simple tasks that take place in an open field 

containing two objects (e.g., Barker & Warburton, 2011; Cost et al., 2014). The tasks utilize 

an acquisition and test phase, between which an object is either replaced or moved to a new 

location (Barker and Warburton, 2011). Time spent with both objects is recorded. 

Historically, these tasks have been used to draw conclusions about recognition memory of 

objects within a field, with an increase in time spent with a novel object, indicating memory 

for the familiar object. This conclusion has been drawn because animals with hippocampal 

and perirhinal lesions spend a greater amount of time with the familiar object, and as such it 

is implied that the animals do not remember the familiar object (e.g., Barker and Warburton, 

2009; 2011). However, it might be more reasonable to say that the animal performing the 

task is displaying a preference for an object (see Moscardo, Salvetti, Becchi, Bertini, & 

Fabene, 2012). Experience can affect preference, which could be a proxy for memory, and is 

relevant to the investigation of risk-taking behaviors (Barnea & Nottebohm, 1996; 

VanElzakker et al., 2008).  

Object-in-Place Task. EE during adolescence decreases novelty preference and 

exploration for same-day delays in NOP and NLP tasks (Cobb & Zrull, 2014). This is in 

contrast to typical NOP and NLP literature in adult animals, where an increase in novelty 

preference following EE has been found (e.g., Cain et al., 2006; Fernandez-Teruel et al., 
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2002; Meehan & Mench, 2002). In order to determine if this result is a result of age or a 

result of the task itself, a more complex task paradigm was necessary. This study utilized an 

object-in-place (OiP) task, first used by Barker and Warburton (2009).The OiP task, which 

combines elements of traditional NOP and NLP tasks, assesses preference for the identity 

and location of four objects in an open field during a test phase following a delay (Cost, 

Lobell, William-Yee, Henderson, & Dohanich, 2014). The OiP task is distinct from NOP and 

NLP tasks as it requires the integration of information about individual object features within 

the environment and the contextual relationships between objects and cues external to the 

environment (Barker & Warburton, 2009,2011; Barker, Bird, Alexander, & Warburton, 

2007). In other words, this task requires the animal to encode the features and locations of 

objects within an environment using external cues.  

The delay used for these tasks has been shown to affect performance in adults. Adult, 

no-EE animals show no discrimination of objects at short delays (5, 30 min; Cost et al., 

2014), however at delays longer than 60 min and up to 48 h, a preference for objects is seen 

(Dix & Aggleton, 1999). Previous studies have indicated that adaptation to novelty following 

EE does not occur until later delays in adolescent animals in NLP tasks (e.g., Cobb & Zrull, 

2014). Therefore, the OiP task was conducted at a short (15 min) and long (60 min) delay to 

examine effects of delay on task performance. In addition, the OiP task was conducted at two 

separate ages (PND 36 and 50) to see how preference changes across the adolescent period.  

 Hippocampus. The OiP task requires the animal to encode features and locations of 

objects in an environment for later recognition using cues that are both internal and external 

to the environment. This unique integration requires hippocampal involvement (Barker & 

Warburton, 2011; Cost et al., 2014).  
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The hippocampus is involved in many processes, including spatial awareness, which 

are particularly relevant to the OiP task (Baker & Warburton, 2011; Cost et al., 2014; 

Dhanushkodi et al., 2007; Nitz & McNaughton, 2004; O’Keefe & Dostrovsky, 1971; 

O’Keefe & Nadel, 1978; VanElzakker et al., 2008; Will et al., 1986; Bennett, Rosenzeig, 

Morimoto, & Herbert, 1979). The hippocampus is responsible for incorporating novel spatial 

information into preexisting representations of a familiar environment, and for the encoding 

of relationships between elements of the environment (Nitz & McNaughton, 2004; O’Keefe 

& Dostrovksy, 1971; VanElzakker et al., 2008). This suggests that the hippocampus is 

essential for OiP memory, the memory of context within an environment.  

The dentate gyrus (DG), the input zone of the hippocampus, is important for the 

detection of novel spatial relationships (VanElzakker et al., 2008; Will et al., 1986). The 

cornu ammonis 1 (CA1), the output zone of the hippocampus, is important for the initial 

formation of spatial memories, as well as the integration of novelty information from an 

environment (Cheng & Frank, 2008; VanElzakker et al., 2008). CA1 neurons receive cortical 

information directly via the entorhinal cortex, and also receive cortical information that has 

been partially processed by the DG and cornu ammonis 3 (CA3; Figure 1; Andersen, Bliss, & 

Skrede, 1971; Dhanushkodi et al., 2007; VanElzakker, Fevurly, Breindel, & Spencer, 2008). 

Thus, CA1 neurons are unique because they receive information from both past and ongoing 

experiential neural patterns (Dhanuskodi et al., 2007; Lee, Hunsaker, & Kesner, 2005; 

Meeter, Murre, & Talamini, 2004; VanElzakker et al., 2008). As such, DG and CA1 should 

be important for novelty recognition tasks that occur at delays, such as the OiP task, and 

looking at these regions should allow for a determination of if detection and consolidation of 

novel information is taking place (VanElzakker et al., 2008).  
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CA1 and DG cells show a divergent response to novelty within an environment (Nitz 

& McNaughton, 2004). In general, CA1 interneurons exhibit a higher firing rate in the 

familiar region, and a decreased firing rate in the novel region (Nitz & McNaughton, 2004). 

In contrast, DG interneurons exhibit a higher firing rate in the novel region, and a decreased 

firing rate in the familiar region (Nitz & McNaughton, 2004).  However, CA1 pyramidal 

cells increase firing rate in response to novelty, while DG granule cells decrease firing rate in 

novel regions (Nitz & McNaughton, 2004).  

Purpose and Hypotheses 

The present study was intended to examine the effects of EE during adolescence on 

preference for familiar objects that have been rearranged using an OiP task. Adolescence is 

an important developmental period during which exploratory behaviors and novelty 

preferences change. These behaviors can be influenced by experiences, such as EE, and the 

changes tested using the OiP task.  In addition, the present study was designed to allow for 

the examination of neural correlates in the hippocampus.  

Given the relationship between EE and performance on tasks assessing novelty 

preference at different delays seen in previous studies, it was predicted that there would be an 

interaction between EE and delay for both PND tests (OiP 1 and OiP 2). EE animals received 

regular EE sessions, while no-EE animals were handled controls. For PND 36 (OiP 1), it was 

predicted that there would be a difference between groups at the 60 min delay, with EE 

animals showing a decreased preference for novelty as compared to no-EE animals. 

Similarly, at the 60 min delay for PND 50 (OiP 2), it was predicted that there would be a 

decrease in novelty preference of the EE animals, as compared to no-EE animals.  
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 It was predicted that the histological data would support these behavioral predictions 

for the 60 min delay as well. EE promotes adaptation to the rearrangement of familiar objects 

in a known environment, such that young animals attend to more familiar features rather than 

novelty within a known environment. As such, it was expected that EE animals would show 

an increase in CA1 and a decrease in DG activation, relative to no-EE animals. 

Materials and Method 

Experimental Design 

 Behavior was tested using an OiP task, which allows assessment of preference for 

objects in varied locations in an open field. A split factorial design was used, in which 

enriched (EE) adolescent male (n=8) and female (n=8) rats were tested at two delay intervals. 

No-EE animals (n=16, 8 male, 8 female) were tested at the same intervals. Following the 

behavioral testing, all rats were sacrificed and brain tissue processed to count baseline 

neuronal activation using c-fos protein as an indicator (see Figure 2).  

Subjects  

Young Long-Evans rats (N=32) were subjects. The rats were provided by Harlan 

Sprague-Dawley and the Arts & Sciences Animal Facility at Appalachian State University. 

The rats were housed in pairs or triples in plastic shoebox cages in a temperature and 

humidity controlled vivarium with a 12 h light-12 h dark illumination cycle. Food and water 

were supplied ad libitum. All experimental procedures were approved by the Institutional 

Animal Care and Use Committee of Appalachian State University (#15-02, #12-13).  

Environmental Enrichment (EE) 

Between PND 25 and 48, half of the rats (n=16, 8 male, 8 female) were exposed to 

EE for 1.5 h/day for five of every seven days (Figure 2). The EE paradigm combined aspects 



ENRICHMENT PROMOTES ADAPTATION TO REARRANGEMENT                           14 
 

of physical and social EE (Figure 3). Four EE set-ups were used, utilizing various objects of 

different sizes and shapes, and familiar and unfamiliar conspecifics. The objects in the EE 

cages changed every day and previously-seen objects were returned to the enrichment cage 

on the fifth day. Seventeen enrichment sessions of this nature occurred in total. The control 

group was handled in the same way as the enriched group except they were returned to their 

home cage instead of experiencing EE.  

Object-in-Place Task and Data Analysis 

Rats were tested in a 1-m2 open field constructed of particle board surrounded by a 

white curtain to which an assortment of visual cues was pinned. The room in which testing 

took place had a low level of illumination and was sound insulated. Each testing session 

included an acclimation trial, two delay intervals (during which the subject was returned to 

the home cage), and two test trials (see Figure 4). Time (s) in contact with each object was 

measured during each trial. In order to be included in analysis, a subject needed to investigate 

each set of objects and explore all objects for at least 10 s in the sample phase. In addition, 

each subject was required to investigate each set of objects and explore all objects for a total 

of 10 s in the test phase to be included in analysis. Testing took place on PND 36 (OiP 1) and 

on PND 50 (OiP 2). 

During the acclimation trial, the subject was placed in the center of the open field and 

allowed to investigate the four different, distinct objects, located in each of the four corners, 

for 3 min. Following a delay of 15 min from the acclimation trial, the subject was again 

placed in the open field and allowed to investigate the altered environment (Trial 2). For this 

trial, two objects exchanged positions. Following a delay of 60 min from the acclimation 

trial, the subject was returned to the open field for a final time, and was allowed to explore 
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the altered environment for 5 min, of which only the first 3 min of behavioral data was 

collected (Trial 3). The longer trial time was to allow for neural activation from the act of 

completing the task. For this trial, the remaining two objects exchanged positions (Figure 4). 

Time investigating the objects in the field was of interest and was measured as time 

spent in direct contact with each of the four objects. For the test trials, the contact time for 

each of the objects was summed to produce a total contact time with objects. Then, contact 

time for the switched objects was summed and a proportion of contact time at the switched 

object relative to total contact time with the objects was calculated. This proportion was the 

dependent variable of interest. For further analysis, all contact times were measured by 

multiple observers, and all trials were videotaped.  

Histology 

Following Trial 3, four EE subjects (2 male, 2 female) were sacrificed immediately. 

All other subjects (N=28) experienced 60 to 90 min of quiet and dark followed by an 

injection with a lethal dose of sodium pentobarbital (100 mg/kg b.w., ip). Upon the absence 

of corneal and tail reflex, each subject was perfused intracardially with phosphate buffered 

saline (PBS) followed by 4% paraformaldehyde in 10 mM phosphate buffer (PB). The brain 

was dissected out of the cranium and post fixed in 10% sucrose in 4% paraformaldehyde in 

PB for 5 days at 4 °C and then transferred to PB for storage at 4 °C. 

Sagittal sections were taken at 50 µm from one hemisphere and representative 

sections were processed using immunohistochemistry (ihc) to visualize the neural activity 

marker c-fos in neurons. Floating sections were rinsed in  PBS (2 x 5 min) and incubated in 

1% hydrogen peroxide for 15 min. Sections were rinsed again in PBS (2 x 5 min) and 

incubated in 15% goat serum in 0.2% Triton-X for 60 min. Sections were then placed in rat 
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anti-c-fos made in rabbit (Santa Cruz, sc-52) for 40 h at 4 °C.  Sections were rinsed in PBS (6 

x 10 min) and incubated in biotinylated goat anti-rabbit secondary antibody (Vector) for 60 

min, and rinsed in PBS again (3 x 10 min). Sections were then exposed to a peroxidase-

labeled avidin-biotin complex for 1 h (Vector) and rinsed in PBS (2 x 10 min). Finally, 

sections were exposed to an enzyme substrate (VIP, Vector) for at least 2 min.  

Following the ihc procedure, sections were mounted onto gel-coated slides and 

allowed to air dry. The sections were dehydrated in graded ethanols, cleared with toluene, 

and cover-slipped with Permount (Fisher). Alternate sections were processed for Nissl 

staining with thionin to see cytoarchitecture.  

Microscopy and data analysis. Analyses of sections were made using a Nikon 

Eclipse microscope, a PixeLink digital camera, and stereological techniques. An atlas of the 

rat brain (Pellegrino, Pellegrino, & Cushman, 1969) was used to identify areas of interest, 

specifically the DG and CA1 regions of the hippocampus (Figure 1).   

The levels of activation were compared between enriched (EE) and control (no-EE) 

conditions in these brain regions. Initially, sections for c-fos positive (fos+) neuron density 

counts were identified by scanning sections using Plan 4 and 10 objectives. Neuron densities 

were counted using the Plan 10 objective and a 1024 x 768 pixel image. A counting frame 

was placed over the image and neurons marked for darkness (light, medium, or dark), which 

was used to indicate the extent of c-fos protein present and thus the extent of neural 

activation, in each sampling frame. Neurons marked as medium and dark were used for 

analyses. Objects that could not be identified were not counted. This yielded 3 (270 µm x 270 

µm) samples per DG and CA1 section from each brain. Then, sample counts were averaged 

across sections to produce one value for each brain for each hippocampal region.  
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Results 

Object-in-Place Task 

The interaction between EE (EE or no-EE) and delay (15 or 60 min) on performance 

of the OiP task was of interest at both PND testing periods. At PND 36, the hypothesis that 

there would be an interaction between EE and delay was supported (see Figure 5). There was 

a significant interaction between EE and delay (F(1,23)= 10.26, p< .0040), with EE animals 

spending about half of their time exploring the rearranged objects at 15 min (M = 0.53, SD = 

0.10) while no-EE animals spent a greater proportion of time with the rearranged objects at 

15 min (M = 0.65, SD= 0.16), t(23) = 2.05, p < .0519. At the 60 min delay, EE animals again 

spent an equal proportion of time with the rearranged objects of interest (M= 0.57, SD= 0.15) 

while no-EE animals spent less time exploring these objects (M = 0.39, SD = 0.23), t(23) = 

2.86, p < .0089. There was an overall effect of EE on the time spent exploring all objects, 

with EE animals spending, on average, a greater amount of time (s) with the objects (M = 

45.7, SD = 12.3) than no-EE animals (M = 31.7, SD = 13.1), F(1,26) = 15.71, p < .0005 

(Table 1). 

At PND 50, the hypothesis that there would be an interaction between EE and delay 

was not supported (see Figure 5). The interaction between EE and delay on proportion of 

time with the rearranged objects was not significant (F(1,19) = 1.03, p < .3240), with EE 

animals spending about half of their time exploring the objects of interest at 15 min (M= 

0.62, SD= 0.22). While no-EE animals spent a greater proportion of time with the rearranged 

objects (M = 0.71, SD = 0.21) in comparison to EE animals, the difference was not 

statistically significant, t(19) = 1.29, p < .2125. At the 60 min delay, EE animals spent less 

time with the rearranged objects than in the previous trial(M = 0.36, SD = 0.27), and roughly 
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the same amount of time with these objects compared to no-EE animals, (M = 0.40, SD = 

0.23) however this difference was not significant, t(19) = 0.60, p < .5556. Again, there was 

an effect of EE on overall time spent with all objects, with EE animals spending less time on 

average with the objects (M = 28.9, SD = 15.1) as compared to no-EE animals (M = 41.5, SD 

= 21.1), F(1,25) = 4.78, p <.0383 (Table 2). 

Histology 

 The hypothesis that EE animals would show an increase in CA1 and a decrease in DG 

neuron activation relative to no-EE animals as indicated by counts of fos+ neurons was not 

supported (see Table 3). Rather, EE animals showed significantly less (-24.4%) neural 

activation in CA1 compared to no-EE animals, as indicated by count of fos+ neurons, F(1, 

21) = 5.17, p < .0336. In the DG, brains of EE animals showed similar activation (+6.8%) as 

observed in brains of no-EE animals, F(1, 21) = 0.22, p < .6419 (see Figure 6). 

Discussion 

The current study examined the effects of EE on performance in a novelty preference 

task (i.e., OiP) in adolescent animals. Neural activation in relevant brain regions (i.e., DG 

and CA1) was also investigated. Thus, the behavioral and neural consequences of an 

enriching experience were examined in a complex object preference task designed to assess 

preference for novelty.  

On PND 36, there was a significant interaction of EE and delay. Differences between 

groups (EE and no-EE) were seen at both 15 min and 60 min delays. Relative to no-EE 

animals, EE animals spent less time exploring the rearranged objects at the 15 min delay and 

more time with these objects at the 60 min delay. However, at both delays EE animals spent 

roughly the same proportion of time with the rearranged and familiar objects. Thus, EE 



ENRICHMENT PROMOTES ADAPTATION TO REARRANGEMENT                           19 
 

animals did not show a preference for novelty on PND 36. In addition, there was a main 

effect of EE on total exploration time of all objects, with EE animals spending more time 

exploring all objects at both delays, relative to no-EE animals.  

Contrary to adult EE literature, which has shown that EE promotes increased novelty 

preference in both NLP and OiP tasks (e.g., Dix & Aggleton, 1999; Meehan & Mench, 

2002), these results suggest that at PND 36, EE promotes adaptation to the rearrangement of 

the environment in adolescent animals. In addition, the total exploration times indicate that 

EE also changes exploration strategies of adolescent rats. Thus, EE animals investigate the 

entire environment and the objects within that environment without showing a preference for 

novelty. This is perhaps not surprising when considering that EE provides myriad 

opportunity for animals to practice exploration of novel, rearranged environments (Forgays 

& Forgays, 1952; Lynn & Brown, 2009). 

Similar to results seen in Stansfield & Kirstein (2005) which showed a short latency 

to approach novelty in adolescent animals, the no-EE adolescent animals in this study 

demonstrated novelty preference very early (at 15 min). These results show that, in general, 

adolescent animals perform differently than adults on this novelty preference task, as no-EE 

animals showed a preference for novelty at 15 min, but not at 60 min. Cost et al. (2014) and 

Dix and Aggleton (1999) have demonstrated that novelty preference in adults (PND 75 and 

later) does not occur until 60 min.  

On PND 50, no significant interaction between EE and delay was found. Again, no-

EE animals spent more time with novelty at 15 min, however this was not significant. In 

addition, a main effect of EE was seen on total exploration time of all objects at both delays, 

with EE animals exploring the objects less than no-EE animals.  
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The general trends of PND 50 results were similar to those seen at PND 36, therefore, 

it is possible that, because the variability at PND 50 was higher than at PND 36, a 

statistically significant difference between the two groups was not seen. In addition, OiP 2 is 

the second time that animals have done the task. While it would not be expected for the 

animals to remember the objects in the field, performance might be different from OiP 1 as  a 

result of the repeat testing design.  

Lastly, the total exploration time results indicate an age-related effect on exploration 

and investigation strategies. Lynn & Brown (2009) showed that late adolescent rats (PND 47-

59) explore more in an open field than early adolescent rats (PND 21-33). Such age-related 

changes in exploration strategies may explain the results at PND 50, as well, with EE animals 

exploring the open field (and not the objects within the field) more than at PND 36. Total 

exploration time (of the entire field) was not investigated in this experiment, but could be 

used to elucidate these results in the future.  

CA1 and DG have been shown to respond divergently to novelty, with CA1 

decreasing neural activation in novel environments and DG increasing (Nitz & McNaughton, 

2004). It was hypothesized that, as a result of adaptation to novelty, CA1 interneuron 

activation would increase (i.e., firing in response to familiarity) in EE animals relative to no-

EE animals. However, significant decrease in fos+ neurons in the CA1 of EE relative to no-

EE animals was found, while there was no difference in DG activation between groups.  

The DG is the input of the hippocampus, while the CA1 is the output of the 

hippocampus. No difference between groups in DG activation indicates that information 

about the novel environment arrangement is recognized by both EE and no-EE groups. A 

decrease in CA1 activation in EE brains relative to no-EE brains indicates that this 
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information is not all being consolidated.  However, it is possible that as a result of EE, 

which provides opportunities to practice integrating novel environment information, the 

copious amounts of information about the environment is being pre-processed and some of 

that information excluded prior to arriving at the CA1. This indicates that EE brains are also 

adapted to novel environment rearrangement early on in the hippocampal pathway.  

Thus, it can be concluded that the effect of EE happens early, both in age and in the 

brain pathway investigated. An interaction of delay and EE was only seen at PND 36, and 

histology results indicate that pre-processing of information occurs prior to reaching the CA1 

in EE brains. It remains to be determined, however, if this is a result of re-testing. This may 

be elucidated by conducting a follow-up study that includes another experimental group that 

receives 17 EE sessions, yet is only tested once, at PND 50.  

It may be also be important to note that because the animals were sacrificed on PND 

50 (when there were no significant differences between groups behaviorally) the neural 

activation seen may not accurately reflect the behavioral results seen at PND 36. As such, it 

remains important to investigate neural activation at PND 36.  

Neural results indicate that EE animals recognize novelty well, while also exhibiting 

pre-processing of novel environment information. Behaviorally EE animals do not show a 

preference to novelty (at least at PND 36). Thus, EE promotes adaptation to novelty in 

younger but not older adolescent animals, both in brain and behavior. These results indicate 

that adolescence is, in fact, a critical period for EE, and that EE that takes place earlier in 

adolescence is most effective at reducing risk-taking behaviors, such as novelty-seeking.  
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Table 1.  

Time (seconds) Spent in Contact with All Objects during Testing Period on PND 36 

Delay  Group N M SD 

15 min EE 16 42.4* 10.1 

 No-EE 14 31.6* 14.9 

60 min EE  15 49.3** 13.6 

 No-EE 12 31.8** 11.3 

Note. The significant difference is indicated (*p < .03, **p < .002). Abbreviations: EE, 

environmental enrichment; No-EE, no EE; postnatal day, PND. 
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Table 2.  

Time (seconds) Spent in Contact with All Objects during Testing Period on PND 50 

Delay  Group N M SD 

15 min EE 13 32.5* 15.9 

 No-EE 12 44.6* 20.5 

60 min EE  14 25.6* 14.2 

 No-EE 13 38.7* 22.2 

Note. The significant difference is indicated (*p < .04). Abbreviations: EE, environmental 

enrichment; No-EE, no EE; postnatal day, PND. 
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Table 3.  

Mean Number of Activated Neurons in Hippocampal Regions for Enriched and 

Control (not Enriched) Animals. 

 

Group 

CA1 DG 

N M SD N M SD 

EE 13 92.3* 33.6 13 132.3 46.5 

No-EE 10 122.1* 27.5 10 123.9 35.8 

Note. The significant difference is indicated (*p < .05). Abbreviations: 

environmental enrichment, EE; No-EE, no EE; cornu ammonis 1, CA1; dentate 

gyrus, DG.  
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Figure 1. Examples of sampled locations of CA1 and DG are indicated by arrows.  

CA1 

DG 
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Figure 2. Nine sessions of EE took place (PND 25-35) prior to OiP 1. Eight additional 

sessions of EE took place (PND 39-48), followed by OiP 2 and perfusion.  
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Figure 3. The picture shows an example of an enrichment cage with one arrangement of 

objects. EE cages were multi-level boxes and contained objects of different shape, color, and 

texture, in addition to same sex familiar and unfamiliar conspecifics. 
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Figure 4. (A) Rats investigated objects for 3 min during the acclimation phase. (B) After a 

delay of 15 min, rats investigated the rearrangement of objects for 3 min. (C) After a delay of 

60 min, rats investigated the final rearrangement of objects for 5 min, of which only the first 

3 min of behavior data was collected. 

  



ENRICHMENT PROMOTES ADAPTATION TO REARRANGEMENT                           36 
 

  

	    

Figure 5. (A) At PND 36, a significant interaction between EE and delay was seen. (B) At 

PND 50, no significant interaction between EE and delay was seen. 
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Figure 6. (A) CA1 region of the hippocampus in EE animals. (B) CA1 region of the 

hippocampus in no-EE animals. EE animals showed a 24.4% reduction in fos+ cells in this 

region compared to no-EE animals. (C) DG region of the hippocampus in EE animals. (D) 

DG region of the hippocampus in no-EE animals. No significant difference was seen between 

groups in this region. 
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